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Clinical objectives

• Describe the diagnostic accuracy of a test.
• Compare accuracy of different tests.



• Suppose we wish to know if the 
expression level of a gene in a tumor can 
predict if patients will have a recurrence of 
their cancer.

• High expression => high probability of 
recurrence
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In this case, gene expression separates cancer from non-cancer perfectly.
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Gene expression

Gene expression levels for cancer and non-cancer overlap.
What threshold should we choose to predict recurrence?



Threshold

Choose a high threshold:
Few false positive predictions, 

but
lots of false negatives
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Cancer



Threshold

Non-diseased
cases

Diseased
cases

Choose a low threshold:
Many false positive predictions, 

but
few false negatives



Notation for conditional probability

• Suppose that the patient has the disease (according to 
gold standard)

• Notation to specify the probability that the test for the 
patient is positive, given that the patient has the disease:

P(Test positive | patient has disease)

P(T+ | D+)

• This notation describes the conditional probability.



Sensitivity and Specificity

• We want the test to be positive when the patient 
has the disease:

• Sensitivity
= P(Test positive | patient has disease)

• We want the test to be negative when the patient 
does not have the disease:

• Specificity
= P(Test negative | patient does not have disease)



Sensitivity and Specificity

• Sensitive => find ALL disease
• Sensitivity

= P(Test positive | patient has disease)

• Specific => find ONLY disease
• Specificity

= P(Test negative | patient does not have 
disease)



• Sensitivity and specificity depend on
– How well the test separates the two groups
– What threshold we choose



Not cancer Cancer

Gene expression

Threshold

If gene expression separates cancer from non-cancer perfectly:

Good sensitivity = P(Test positive | patient has disease)

Good specificity = P(Test negative | patient does not have disease)
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If gene expression levels for cancer and non-caner overlap:

Sensitivity and specificity depend on what threshold we choose



Threshold

High threshold:
Few false positive predictions, 

but
lots of false negatives

Not cancer

Cancer

Poor sensitivity = P(Test positive | 
patient has disease)
Many false negatives

Good specificity = P(Test negative | 
patient does not have disease)
Few false positives



Threshold

Not cancer

Cancer

Low threshold:
Many false positive predictions, 

but
few false negatives

Good sensitivity 
= P(Test positive | patient has disease)
Few false negatives

Poor specificity 
= P(Test negative | patient does not have disease)
Many false positives



Sensitivity and Specificity

• Sensitivity
= P(Test positive | patient has disease)
= P(T+ | D+)
= True positive rate

• Specificity
= P(Test negative | patient does not have disease)
= P(T- | D-)
=True negative rate



• False positive rate (FPR) = 1 – specificity
• False negative rate (FNR) = 1 - sensitivity



Threshold

High threshold:
Few false positive predictions, 

but
lots of false negatives

Not cancer

Cancer Poor sensitivity = P(Test positive | 
patient has disease)
Many false negatives

Good specificity = P(Test negative | 
patient does not have disease)
Few false positives

Low False positive rate (FPR) = 1 – specificity

High False negative rate (FNR) = 1 - sensitivity



• Sensitivity and specificity tell us about the 
test result, given that we know if the 
patient has the disease or not.

• In clinic, we don’t know if the patient has 
the disease; that’s what we want the test 
to tell us.



PPV and NPV

• Positive predictive value (PPV)
= P(patient has disease | Test positive )
= P(D+ | T+)

• Negative predictive value (NPV)
= P(patient does not have disease | Test 

negative )
= P(D- | T-)



Sensitivity and Specificity

• Sensitivity = P(T+ | D+)
• Specificity = P(T- | D-)
• PPV = P(D+ | T+)
• NPV = P(D- | T-)



• PPV and NPV are a function of the 
prevalence (the proportion of the 
population that has the disease), as we 
will see shortly

• Sensitivity and specificity do not depend 
on the prevalence. They are conditional on 
the patient either having or not having the 
disease.



• We calculate PPV and NPV using Bayes’ 
rule



• P(D+|T+) = Probability of disease given test +ve 
• P(T+|D+) = sensitivity
• P(D+) = prevalence
• P(T+|D-) = 1 – specificity
• P(D-) = 1- prevalence
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Positive predictive value



• Pre-test probability = estimated probability 
that the patient has the disease before 
getting the diagnostic test result.
– The pre-test probability = prior probability

• Post-test probability = estimated 
probability that the patient has the disease 
after getting the diagnostic test result.
– The post-test probability = posterior 

probability



ROC curves

• We want to be able to compare the 
accuracy of diagnostic tests.

• Sensitivity and specificity are candidate 
measures for accuracy, but have some 
problems, as we’ll see.

• ROC curves are an alternative measure



ROC curves

• We plot sensitivity against 1 – specificity to 
create the ROC curve for a test
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A test that perfectly separates the two groups

Sensitivity = P(Test positive | patient has disease) = 1.0

Specificity = P(Test negative | patient does not have disease) = 1.0
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ROC curve for a perfect test

Sensitivity = 1
Specificity = 1

1 – specificity = 0



• For a single diagnostic test, sensitivity and 
specificity vary with the threshold we use.
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High threshold

Not cancer

Cancer

High threshold:
Good specificity = P(T-| D-)
Medium sensitivity = P(T+|D+)
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Medium threshold

Not cancer

Cancer

Medium threshold:
Medium specificity = P(T-| D-)
Medium sensitivity = P(T+|D+)
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Low threshold

Cancer

Not cancer

Low threshold:
Medium specificity = P(T-| D-)
Good sensitivity = P(T+|D+)
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Extreme low threshold:
No specificity = P(T-| D-)
Perfect sensitivity = P(T+|D+)
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For a test that cannot separate 
the two classes, the ROC 
curve is a straight 45 degree 
line.

Good tests approach the top 
left corner of the ROC curve. ch
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Good tests approach the top left corner of the 
ROC curve.
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The area under the ROC curve describes test accuracy
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Poor test: ROC area near 0.5

Good test: ROC area near 1.0



• Sensitivity and specificity don’t always 
make it clear which of two diagnostic tests 
is better



Which test is better?
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Different ROC for each test

Test B is better 
Greater ROC area



1.0 −

 

Specificity

Se
ns

iti
vi

ty

1.0

1.0
0.0

0.0

Test A

Test B

Test A is better
Greater ROC area

Different ROC for each test



Both tests are on the same ROC

1.0 −

 

Specificity

Se
ns

iti
vi

ty
1.0

1.0
0.0

0.0

Test A

Test B Tests have same 
area under ROC



ROC curves may cross. 

In this case, total area under the 
ROC curve may not be a good 
measure for comparing tests



Potential ROC issues

• Lack of gold standard for diagnosis
• Lack of reproducibility 

– E.g., disagreement among pathologists
• Bias in sample selection, spectrum of 

disease used in evaluating test
– Choose sickest patients, healthy controls

• Problems in ascertainment
– Genetic disease may not be manifest

• Can’t always reliably measure ROC area



Bayes’ rule

• How to use Bayes’ rule to determine the 
posterior probability



Bayes’ rule

• P(D+) (prior probability), the prior probability 
that the patient has the disease in the 
absence of any test data (prevalence)

• P(T+): probability of a positive test result 
(including both true positive and false 
positive)

• P(D|T) (posteriori probability), the probability 
of disease given the test result



Bayes’ rule
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• P(D+|T+) = Probability of disease given test +ve 
• P(T+|D+) = sensitivity
• P(D+) = prevalence
• P(T+|D-) = 1 – specificity
• P(D-) = 1- prevalence
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Positive predictive value



• Example: sensitivity = 0.9, specificity = 0.8, 
prevalence=0.5

• P(T+|D+) = Sensitivity = 0.9
• P(D+) = 0.5
• P(T+|D-) = 1 – specificity = 1 - 0.8 = 0.2
• P(D-) = 1- prevalence = 1 – 0.5 = 0.5
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